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1 INTRODUCTION
The impending end ofMoore’s Law has generated a surge of interest
within the database community in exploring alternative hardware
solutions for efficiently handling database analytical workloads [5].
This is driven by the realization that traditional CPU performance
is no longer scaling as it used to, making it necessary to investigate
other hardware options. Our community has identified this oppor-
tunity, and over the years we have seen substantial work both in
improving CPU execution using newly available hardware instruc-
tions [11, 24] or compilation [16], and exploring new hardware
such as GPUs [19], FPGAs [10], or other accelerators [9, 22].

In this short paper, we add a new chapter in the quest of searching
for the Database Machine [8] and show some early results obtained
by running selected TPC-H queries on an Xbox console.While using
an Xbox to execute SQL queries might initially seem like a bizarre
choice, Xbox has an interesting hardware configuration since it is
equipped with an AMD chiplet with integrated CPU and GPU. This
means an Xbox has a memory bandwidth of around 560GB/s—about
2-4× what is currently obtainable from a CPU server, or about 25%
less than a NVIDIA P100 discrete GPU (see Table 1). Furthermore,
as far as we know, Xbox is one of the few devices with an integrated
CPU and GPU that is already deployed at cloud scale thanks to the
Xbox Cloud Gaming offering [4].

Until recently, chiplet devices with an integrated CPU and GPU
were mostly confined into lower-end laptops. In recent years, how-
ever, we have been witnessing a renewed interest in high-end
chiplet devices such as Apple Silicon [1], AMD MI300 [20], and
Xbox [3]. This new wave of chiplet devices offer similar characteris-
tic as GPUs, but without having to transmit data through the PCIe
bus. Quite surprisingly, only a handful of works [12, 17] recognized
this opportunity early on. Our hope with this paper is to increase
awareness of this new hardware trend. To show the capabilities that
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Figure 1: Executing a SQL query on different hardware back-
ends with different memory bandwidth properties.

these chiplet devices can attain, we have implemented an extension
of TQP [13] to run SQL queries on Xbox with performance that is
comparable to an NVIDIA P100 GPU, but without the overhead of
moving data from CPU to GPUmemory. For the selected queries we
picked from TPCH, we can achieve almost up to 20× improvement
over state-of-the-art CPU-only open-source solutions (DuckDB),
while being only marginally slower than a P100. As far as we know,
this paper is the first showing that is possible to run SQL queries
on a gaming console, with performance that is orders of magnitude
better than CPU-only solutions.

Summarizing, the contributions of this paper are: (1) identify-
ing a set of limitations of query processing over discrete CPUs
and GPUs, while highlighting chiplets with integrated CPU and
GPU as interesting devices for analytical workloads (Section 2); (2)
showing experimentally the performance of integrated CPU and
GPU devices by running a few selected TPCH queries on Xbox,
and comparing against a discrete GPU (NVIDIA P100) and CPU
baselines (Section 3).

2 CPU VS GPU: A QUALITATIVE ANALYSIS
In this Section we are going to provide a qualitative assessment on
Query Processing (QP) of analytical queries on CPUs and GPUs.
We will also discuss the strengths and limitations of these hardware
options when it comes to QP. Figure 1 summarizes our investigation.
Let us assume we have a SQL query that is memory bound (as is
typically the case for analytical queries). When executing the query
on a CPU (➊), ideally we can expect to achieve a throughput of
about 300GB/s—the maximum throughput currently achievable by
the fastest DDRmemory [21]. Next, processing on GPUs (➋) brings
several advantages compared to CPUs.
• High memory bandwidth: The availability of High Bandwidth
Memory (HBM) [2] on a GPU offers an aggregate bandwidth in
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the order of TBs/sec (about one order of magnitude higher than
the CPU case), tremendously benefit analytical queries. While
recent CPUs [14] have started to incorporate HBM in their de-
signs, their lower core counts and memory-level parallelism can
result in a lower utilization of the available bandwidth.

• Massive parallelism: While high-end CPU servers can have more
than a hundred cores [6, 7], GPUs are equipped with at least an
order of magnitude more, that is, thousands of (simpler) CUDA
cores (NVIDIA) or Stream Processors (AMD). Moreover, GPUs
can efficiently handle hundreds of thousands of concurrent thread
contexts. This architecture supporting massive parallelism is a
good fit for executing well-parallelizable analytics operations.

• User-controlled coherence and synchronization: GPUs offer more
control than CPUs to users for data placement, and data coher-
ence is explicitly controlled by the user program. This eliminates
the hardware complexity that would otherwise be required to
guarantee coherence through transparent mechanisms as on
CPUs, and can be efficiently handled for analytics queries.
Because of the above characteristics, GPUs outperform CPUs

for data analytics workloads if the data fits in the (HBM) device
memory [19]. However, data is often fetched from higher-capacity
locations, such as CPU memory, local or remote storage. This data
copy operation requires to pass through the PCI-e bus, with limited
bandwidth both compared to the device and the host memory.

We next focus on low-end CPU/GPU chiplet devices (➌). These
devices have the same memory bandwidth as CPUs, therefore they
suffer from the same limitations as CPU-only QP. Indeed GPUs
can be leveraged here to improve computation peformance, but in
general the memory bandwidth accessed by these GPUs are low
and will limit the data processing throughput of QP. These limi-
tations however disappear in high-end CPU/GPU chiplets devices
(➍) such as Apple M1, AMD MI300A, and Xbox. In this case, in fact,
QP can leverage the high bandwidth of the HBM memory, while
not be limited by PCI-e. Additionally, these devices have adequate
computation power to fully utilize the high memory bandwidth 1,
and they don’t suffer from the CPU synchronization overhead since
we can use the SIMT-based execution of the GPU to guarantee low
synchronization overhead. These devices are also reasonably priced
compared to discrete GPUs because each core is designed with the
critical computation instructions only. While the per-core perfor-
mance is weaker than regular CPUs due to simper instructions,
limited speculation execution and no hyper-threading, more cores
can be packed in the chip, therefore enabling better utilization of
the high memory bandwidth. Finally, synchronization between the
CPU and the GPU for data access is more fine-grained and cheaper
compared to data copy over PCI-e, although careful design is still
required for correct concurrent execution.

3 EXPERIMENTS
3.1 Implementation
For this evaluation we have integrated TQP with Antares [15]: a
state-of-the-art compiler for Deep Learning models able to tune
and code-generate kernels for different hardware. Furthermore, we
have extended Antares to support Xbox. The compilation workflow
1Note that the GPU must be used in order to fully utilize the available bandwidth, i.e.,
using the CPU cores is not enough to drain all the bandwidth.

is as follows: (1) each input query is first parsed and optimized using
Apache Spark [23]; (2) TQP converts the Spark physical plan into a
tree composed of PyTorch programs, one for each physical operator
in the original plan; (3) PyTorch jit.trace is used to freeze the
computation graph composed by the PyTorch programs; (4) The
frozen computation graph (in TorchScript format) is lowered into
the Antares IR; (5) Antares fuser and tuner are used to generate
optimal programs. The above compilation process is fully automatic.

3.2 Settings
Hardware Setup. For the experiments we use three different hard-
ware configurations. A CPU-only machine with a Xeon E5-2690
v4 with 2 sockets, and where each socket has 14 cores supporting
up 28 threads. The host memory in this machine is a DD4 2400
with 8 banks. The GPU machine has an NVIDIA Tesla P100 with
PCIe v3. Finally, we used a standard Xbox Series X. The hardware
performance of each machine is summarized in Table 1.

Xeon E5-2690 P100 Xbox Series X
Memory Bandwidth (GB/s) 154 732 560
Unidirectional PCIv3 (GB/s) - 16 -

Theoretical TFLOps 1.4 9.5 12.0
Table 1: Experiment Setup for CPU/GPU/Xbox

Experimental Setup. We selected four queries from TPCH. These
queries cover a large set of use cases: filter with simple aggregation
(query 6); case statement and PK-FK join (14); join, simple aggrega-
tion and subquery (17); complex filters involving string match and
in statements, join and simple aggregation (19). We run each query
using TQP and Antares on the CPU and GPU machine, and on the
Xbox. We compare the TQP performance against DuckDB [18]: a
popular vectorized databases. We use DuckDB version 6.1. For each
query, we run it 10 times and report the median of the last 5 runs.
We use TPCH dbgen at scale factor 10. Since TQP does not support
decimals yet, we convert all decimals columns into doubles.

Query
CPU NVIDIA P100 Xbox Series X

DuckDB TQP TQP ( + PCIe3 ) TQP

TPCH-6 73 56.281 4.294 (+ 251.229) 4.205
TPCH-14 116.523 131.092 10.656 (+ 272.135) 17.302
TPCH-17 789.905 829.936 118.174 (+ 177.088) 155.109
TPCH-19 225.485 194.114 10.403 (+ 322.746) 13.767

Table 2: Latency (in ms) of selected TPCH queries (SF 10).

3.3 Results
We report the end-to-end latency results in Table 2. Starting from
the CPU numbers, TQP outperforms DuckDB for query 6 and query
19, and is within 15% fromDuckDB for queries 17 and 14. If we focus
now on the P100 numbers where the data is already pre-loaded in
GPU memory (i.e., no PCIe overhead), TQP outperforms DuckDB
by up to 22× (query 19). However, if we add the time to move data
from CPU to GPU memory, only query 17 is faster on the P100 than
DuckDB on the CPU-only machine. In fact, for query 17, 60% of
the total time is spent on data movements over the PCIe, while the
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other three queries spend no less than 96% of the total end-to-end
time on moving data over the PCIe bus.

Finally, if we look at Xbox numbers, TQP numbers are quite in
line with the P100 performance (with data already pre-loaded in
GPU memory), but it does not suffer from any PCIe overhead since
the CPU and GPU memory are unified. The difference between
Xbox and P100 performance is mostly driven by the difference in
memory bandwidth (around 23%) between the two devices.

4 CONCLUSION
The Xbox console has an interesting hardware configuration where
the CPU and the GPU are integrated and share 29GB of HBM. In
this paper we run few selected TPCH queries on an Xbox, and see
that the Xbox performance can be comparable to that of a discrete
GPU while avoiding the PCIe data transfer bottleneck. Based on
these encouraging early results, we plan to support the full TPCH
soon and share more details of our approach in an upcoming paper.

REFERENCES
[1] 2023. Apple Silicon. https://en.wikipedia.org/wiki/Apple_silicon. [Online;

accessed Dec 2023].
[2] 2023. HBM. https://en.wikipedia.org/wiki/High_Bandwidth_Memory. [Online;

accessed Dec 2022].
[3] 2023. XBox. https://en.wikipedia.org/wiki/Xbox. [Online; accessed Dec 2023].
[4] 2023. XCloud. https://en.wikipedia.org/wiki/Xbox_Cloud_Gaming. [Online;

accessed Dec 2023].
[5] Gustavo Alonso. 2023. Data Processing in the Hardware Era. https://www.

youtube.com/watch?v=KekKAKI0Aho&feature=youtu.be.
[6] ampere. 2023. Ampere Altra Max. https://amperecomputing.com/processors/

ampere-altra.
[7] anandtech. 2021. AMD gives details on EPYC Zen4 Genoa and Bergamo, up to

96 and 128 cores. amd-gives-details-on-epyc-zen4-genoa-and-bergamo-up-to-
96-and-128-cores.

[8] Haran Boral and David J. DeWitt. 1983. Database Machines: An Idea Whose
Time has Passed? A Critique of the Future of Database Machines. In Database
Machines, H.-O. Leilich andM.Missikoff (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 166–187.

[9] Helena Caminal, Yannis Chronis, Tianshu Wu, Jignesh M. Patel, and José F.
Martínez. 2022. Accelerating Database Analytic Query Workloads Using an
Associative Processor. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (New York, New York) (ISCA ’22). Association for
Computing Machinery, New York, NY, USA, 623–637. https://doi.org/10.1145/
3470496.3527435

[10] Anshuman Dasgupta, Zaid Al-Ars, Gustavo Alonso, and Timothy Roscoe. 2010.
Database Acceleration Using Reconfigurable Hardware. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data (Indianapolis,

Indiana) (SIGMOD ’10). ACM, New York, NY, USA, 1119–1122. https://doi.org/
10.1145/1807167.1807294

[11] Gruber, Ferdinand; Bandle, Maximilian; Engelke, Alexis; Neumann, Thomas;
Giceva, Jana. 2023. Bringing Compiling Databases to RISC Architectures. https:
//db.in.tum.de/~gruber/p791-gruber.pdf. [Online; accessed March 2023].

[12] Bingsheng He, Xiaoyi Lu, WenjianWang, FanWu, and Rui Zhang. 2015. In-Cache
Query Co-Processing on Coupled CPU-GPU Architectures. Proceedings of the
VLDB Endowment 8, 4 (2015), 329–340.

[13] DongHe, SupunCNakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun
Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karanasos, and
Matteo Interlandi. 2022. Query Processing on Tensor Computation Runtimes.
PVLDB (2022), 2811–2825.

[14] hpcwire. 2023. Intel Officially Launches Sapphire Rapids and HPC-optimized Max
Series. https://www.hpcwire.com/2023/01/10/intel-officially-launches-sapphire-
rapids-and-max-series/.

[15] Microsoft. 2023. Antares. https://github.com/microsoft/antares.
[16] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. Proc. VLDB Endow. 4, 9 (jun 2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[17] Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, and David A. Wood. 2015.
Toward GPUs Being Mainstream in Analytic Processing: An Initial Argument
Using Simple Scan-Aggregate Queries. In Proceedings of the 11th International
Workshop on Data Management on New Hardware (Melbourne, VIC, Australia)
(DaMoN’15). Association for Computing Machinery, New York, NY, USA, Article
11, 8 pages. https://doi.org/10.1145/2771937.2771941

[18] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data, SIGMODConference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska (Eds.). ACM, 1981–1984. https://doi.org/10.1145/3299869.3320212

[19] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics.
In SIGMOD. 1617–1632.

[20] Ryan Smith. 2023. CES 2023: AMD Instinct MI300 Data Center
APU Silicon In Hand - 146B Transistors, Shipping H2’23. https:
//www.anandtech.com/show/18721/ces-2023-amd-instinct-mi300-data-
center-apu-silicon-in-hand-146b-transistors-shipping-h223.

[21] Versus. 2023. Memory bandwidth. https://versus.com/en/glossary/memory-
bandwidth.

[22] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: The Architecture and Design of a Database Processing Unit.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (Salt Lake City, Utah, USA) (ASP-
LOS ’14). Association for Computing Machinery, New York, NY, USA, 255–268.
https://doi.org/10.1145/2541940.2541961

[23] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Spark: Cluster Computing with Working Sets. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation
(Hollywood, CA) (OSDI’12). USENIX Association, 10–10. https://www.usenix.
org/conference/osdi12/technical-sessions/presentation/zaharia

[24] Jingren Zhou and Kenneth A. Ross. 2002. Implementing Database Opera-
tions Using SIMD Instructions. In Proceedings of the 2002 ACM SIGMOD In-
ternational Conference on Management of Data (Madison, Wisconsin) (SIG-
MOD ’02). Association for Computing Machinery, New York, NY, USA, 145–156.
https://doi.org/10.1145/564691.564709

88

https://en.wikipedia.org/wiki/Apple_silicon
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikipedia.org/wiki/Xbox
https://en.wikipedia.org/wiki/Xbox_Cloud_Gaming
https://www.youtube.com/watch?v=KekKAKI0Aho&feature=youtu.be
https://www.youtube.com/watch?v=KekKAKI0Aho&feature=youtu.be
https://amperecomputing.com/processors/ampere-altra
https://amperecomputing.com/processors/ampere-altra
amd-gives-details-on-epyc-zen4-genoa-and-bergamo-up-to-96-and-128-cores
amd-gives-details-on-epyc-zen4-genoa-and-bergamo-up-to-96-and-128-cores
https://doi.org/10.1145/3470496.3527435
https://doi.org/10.1145/3470496.3527435
https://doi.org/10.1145/1807167.1807294
https://doi.org/10.1145/1807167.1807294
https://db.in.tum.de/~gruber/p791-gruber.pdf
https://db.in.tum.de/~gruber/p791-gruber.pdf
https://www.hpcwire.com/2023/01/10/intel-officially-launches-sapphire-rapids-and-max-series/
https://www.hpcwire.com/2023/01/10/intel-officially-launches-sapphire-rapids-and-max-series/
https://github.com/microsoft/antares
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/2771937.2771941
https://doi.org/10.1145/3299869.3320212
https://www.anandtech.com/show/18721/ces-2023-amd-instinct-mi300-data-center-apu-silicon-in-hand-146b-transistors-shipping-h223
https://www.anandtech.com/show/18721/ces-2023-amd-instinct-mi300-data-center-apu-silicon-in-hand-146b-transistors-shipping-h223
https://www.anandtech.com/show/18721/ces-2023-amd-instinct-mi300-data-center-apu-silicon-in-hand-146b-transistors-shipping-h223
https://versus.com/en/glossary/memory-bandwidth
https://versus.com/en/glossary/memory-bandwidth
https://doi.org/10.1145/2541940.2541961
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1145/564691.564709

	1 Introduction
	2 CPU vs GPU: A Qualitative Analysis
	3 Experiments
	3.1 Implementation
	3.2 Settings
	3.3 Results

	4 Conclusion
	References

